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Summary

We consider the problem of approximating smoothing spline estimators in a nonparametric
regression model. When applied to a sample of size n, the smoothing spline estimator can be
expressed as a linear combination of n basis functions, requiring O(n3) computational time when
the number d of predictors is two or more. Such a sizeable computational cost hinders the broad
applicability of smoothing splines. In practice, the full-sample smoothing spline estimator can
be approximated by an estimator based on q randomly selected basis functions, resulting in a
computational cost of O(nq2). It is known that these two estimators converge at the same rate
when q is of order O{n2/(pr+1)}, where p ∈ [1, 2] depends on the true function and r > 1 depends
on the type of spline. Such a q is called the essential number of basis functions. In this article, we
develop a more efficient basis selection method. By selecting basis functions corresponding to
approximately equally spaced observations, the proposed method chooses a set of basis functions
with great diversity. The asymptotic analysis shows that the proposed smoothing spline estimator
can decrease q to around O{n1/(pr+1)} when d � pr + 1. Applications to synthetic and real-
world datasets show that the proposed method leads to a smaller prediction error than other basis
selection methods.

Some key words: Nonparametric regression; Penalized least squares criterion; Space-filling design; Star discrepancy;
Subsampling.

1. Introduction

Consider the nonparametric regression model yi = η(xi)+εi (i = 1, . . . , n), where yi ∈ R is the
ith observation of the response, η represents an unknown function to be estimated, xi ∈ R

d is the
ith observation of the predictor variable, and {εi}n

i=1 are independent and identically distributed
random errors with zero mean and unknown variance σ 2. The function η can be estimated by
minimizing the penalized least squares criterion,

1

n

n∑
i=1

{yi − η(xi)}2 + λJ (η), (1)

where J (η) is a quadratic roughness penalty (Wahba, 1990; Wang et al., 2011; Gu, 2013). The
smoothing parameter λ controls the trade-off between the goodness-of-fit of the model and the
roughness of the function η. In this paper, expression (1) is minimized in a reproducing kernel
Hilbert space H, which leads to a smoothing spline estimate for η.
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724 C. Meng et al.

Although univariate smoothing splines can be computed in O(n) time (Reinsch, 1967), it takes
O(n3) time to find the minimizer of (1) when d � 2. Such a high computational cost hinders
the use of smoothing splines for large samples. To reduce the computational cost for smoothing
splines, extensive efforts have been made to approximate the minimizer of (1) by restricting the
estimator η̂ to a subspace HE ⊂ H. Let the dimension of the space HE be q and the restricted
estimator be η̂E . Compared with the O(n3) computational cost of calculating η̂, the computational
cost of η̂E can be reduced to O(nq2). Along this line, numerous methods have been developed in
recent decades. Luo & Wahba (1997) and Zhang et al. (2004) approximated the minimizer of (1)
using variable selection techniques. Pseudosplines (Hastie, 1996) and penalized splines (Ruppert
et al., 2009) were also used to approximate smoothing splines.

Although these methods have already yielded impressive algorithmic benefits, they are usually
ad hoc in terms of choosing the value of q. The value of q regulates the trade-off between
the computational time and the prediction accuracy. One fundamental question is how small q
can be to ensure that the restricted estimator η̂E converges to the true function η at the same
rate as the full-sample estimator η̂. To answer this question, Gu & Kim (2002) and Ma et al.
(2015) developed random sampling methods for selecting the basis functions and established a
coherent theory for the convergence of the restricted estimator η̂E . To ensure that η̂E has the same
convergence rate as η̂, the methods in both Gu & Kim (2002) and Ma et al. (2015) require q to
be of order O{n2/(pr+1)+δ}, where δ is an arbitrary small positive number, p ∈ [1, 2] depends on
the true function η, and r depends on the fitted spline. In a 1999 PhD thesis by F. Gao from the
University of Wisconsin-Madison, it is shown that fewer basis functions are needed to guarantee
the aforementioned convergence rate if one selects the basis functions {R(zj, ·)}q

j=1 with {zj}q
j=1

approximately equally spaced. However, Gao provided theory only in the univariate predictor
case, and that method cannot be directly applied to the multivariate setting.

In this paper, we develop a more efficient computational method for approximating smoothing
splines. The distinguishing feature of our method is that it incorporates the notion of diversity of
the selected basis functions. We propose a space-filling basis selection method, which chooses
basis functions with large diversity by selecting the ones that correspond to roughly uniformly
distributed observations. When d � pr+1, we show that the proposed smoothing spline estimator
has the same convergence rate as the full-sample estimator, and the order of the essential number
q of basis functions is reduced to O{n(1+δ)/(pr+1)}.

2. Smoothing splines and the basis selection method

Let H = {η : J (η) < ∞} be a reproducing kernel Hilbert space, where J (·) is a squared
seminorm. Let NJ = {η : J (η) = 0} be the null space of J (η) and assume that NJ is a finite-
dimensional linear subspace of H with basis {ξi}m

i=1, where m is the dimension of NJ . Let HJ be
the orthogonal complement of NJ in H, so that H = NJ ⊕ HJ . The space HJ is a reproducing
kernel Hilbert space with J (·) as the squared norm. The reproducing kernel of HJ is denoted
by RJ (· , ·). The well-known representer theorem (Wahba, 1990) states that there exist vectors
d = (d1, . . . , dm)T ∈ R

m and c = (c1, . . . , cn)
T ∈ R

n such that the minimizer of (1) in H
is η(x) = ∑m

k=1 dkξk(x) + ∑n
i=1 ciRJ (xi, x). Let Y = (y1, . . . , yn)

T be the vector of response
observations, S the n × m matrix with (i, j)th entry ξj(xi), and R the n × n matrix with (i, j)th
entry RJ (xi, xj). Solving the problem of minimizing (1) is therefore equivalent to solving

(d̂, ĉ) = arg min
d,c

1

n
(Y − Sd − Rc)T(Y − Sd − Rc) + λcTRc, (2)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/107/3/723/5831923 by R
enm

in U
niversity user on 26 O

ctober 2024



More efficient approximation of smoothing splines 725

where the smoothing parameter λ can be selected based on the generalized cross-validation
criterion (Wahba & Craven, 1978). In the general case of n � m and d � 2, the computational
cost of calculating (d̂, ĉ) in (2) is O(n3), which is prohibitive when the sample size n is large.
To reduce the computational burden, one can restrict the full-sample estimator η̂ to a subspace
HE ⊂ H, where HE = NJ ⊕ span{RJ (x∗

i , ·) : i = 1, . . . , q}. Here HE , called the effective model
space, can be constructed by selecting a subsample {x∗

i }q
i=1 from {xi}n

i=1. Such an approach is
called a basis selection method.

Denote by R∗ ∈ R
n×q the matrix with (i, j)th entry RJ (xi, x∗

j ) and by R∗∗ ∈ R
q×q the matrix

with (i, j)th entry RJ (x∗
i , x∗

j ). The minimizer of (1) in the effective model space HE can thus be

written as ηE(x) = ∑m
k=1 dkξk(x) + ∑q

i=1 ciR(x∗
i , x), and the coefficients dE = (d1, . . . , dm)T

and cE = (c1, . . . , cq)
T can be obtained by solving

(d̂E , ĉE) = arg min
dE , cE

1

n
(Y − SdE − R∗cE)T(Y − SdE − R∗cE) + λcT

ER∗∗cE .

The restricted estimator η̂E evaluated at the sample points therefore satisfies η̂E = Sd̂E +
R∗ĉE , where η̂E = {η̂E(x1), . . . , η̂E(xn)}T. In the general case where m � q � n, the overall
computational cost of the basis selection method is O(nq2), which is a significant reduction
from O(n3). Recall that the value of q controls the trade-off between the computational time and
the prediction accuracy. To ensure that η̂E converges to the true function η at the same rate as
η̂, researchers have shown that the essential number q of basis functions needs to be of order
O{n2/(pr+1)+δ}, where δ is an arbitrary small positive number (Kim & Gu, 2004; Ma et al., 2015).
In the next section, we present a space-filling basis selection method which reduces this order to
O{n(1+δ)/(pr+1)}.

3. Space-filling basis selection

3.1. Motivation and notation

To motivate the development of the proposed method, we first re-examine ensemble learning
methods that are well-known in the statistics and machine learning communities (Dietterich, 2002;
Rokach, 2010). To achieve better predictive performance than a single learner, which is either a
model or a learning algorithm, ensemble learning methods first build a committee consisting of a
number of different learners, and then aggregate the predictions of the learners in the committee.
The aggregation is usually achieved by employing majority vote or by calculating a weighted
average. The diversity among the learners in the committee is key to the success of ensemble
learning methods; greater diversity in the committee yields better performance (Kuncheva &
Whitaker, 2003).

The restricted smoothing spline estimator η̂E can be considered an ensemble learning method.
In particular, the prediction of η̂E is done by taking a weighted average of the predictions of the
selected basis functions RJ (x∗

i , ·) (i ∈ {1, . . . , q}) in addition to the basis functions in the null
space NJ . Inspired by Kuncheva & Whitaker (2003), we propose to select a subsample {x∗

i }q
i=1

such that the diversity among the basis functions {RJ (x∗
i , ·)}q

i=1 is as large as possible. One crucial
question is how to measure the diversity in a set of basis functions. Notice that adjacent data points,
x∗

i ≈ x∗
j (i, j ∈ {1, . . . , q}), yield similar basis functions, i.e., RJ (x∗

i , ·) ≈ RJ (x∗
j , ·). On the other

hand, if x∗
i is far away from x∗

j , the basis function RJ (x∗
i , ·) tends to be different from RJ (x∗

j , ·).
These observations motivate us to select a set of basis functions {RJ (x∗

i , ·)}q
i=1 where {x∗

i }q
i=1

are as uniformly distributed as possible. The uniformly distributed property, usually referred to
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726 C. Meng et al.

as the space-filling property in the experimental design literature (Pukelsheim, 2006), can be
systematically measured by the star discrepancy.

Since the star discrepancy is defined for data in [0, 1]d , in practice we need to map data with
an arbitrary distribution to this domain. Suppose Xn = {xi}n

i=1 are independent and identically
distributed observations generated from the cumulative distribution function F with bounded
support D ⊂ R

d . Let τ be a transformation such that {τ(xi)}n
i=1 follows the uniform distribution

on [0, 1]d . In the simple case where d = 1 and F is known, we can find the transformation τ

by setting τ = F . In the more general case where d > 1 and F is unknown, the transformation
τ can be calculated using optimal transport theory (Villani, 2008). However, finding the exact
solution via optimal transport theory can be time-consuming. Instead, one can approximate the
transformation τ using the iterative transformation approach of Pukelsheim (2006) or Meng et al.
(2019), or the sliced optimal transport map approach of Rabin et al. (2011). The computational cost
of these two approaches is O{Kn log(n)}, where K is the number of iterations (Cuturi & Doucet,
2014; Bonneel et al., 2015; Kolouri et al., 2018). This cost is negligible compared with that of the
proposed method. In practice, the data can always be pre-processed using the τ transformation.
Without loss of generality, one may assume the Xn to be independent and identically distributed
observations generated from the uniform distribution on [0, 1]d .

3.2. Star discrepancy and space-filling design

Let a = (a1, . . . , ad)T ∈ [0, 1]d , let [0, a) = ∏d
j=1[0, aj) be a hyper-rectangle, and let 1{·}

denote the indicator function. The local discrepancy and the star discrepancy are defined as
follows (Fang et al., 2005; Pukelsheim, 2006).

Definition 1. Given Xq = {x1, . . . , xq} in [0, 1]d and a hyper-rectangle [0, a), the correspond-
ing local discrepancy is defined as D(Xq, a) = ∣∣(1/q)

∑q
i=1 1{xi ∈ [0, a)} − ∏d

j=1 aj
∣∣. The star

discrepancy corresponding to Xq is defined as D∗(Xq) = supa∈[0,1]d D(Xq, a).

The local discrepancy D(Xq, a) measures the difference between the volume of the hyper-
rectangle [0, a) and the fraction of data points located in [0, a); it is illustrated in Fig. 1(a). The
star discrepancy D∗(Xq) calculates the supremum over a ∈ [0, 1]d of all the local discrepancies;
in other words, the smaller D∗(Xq) is, the more space-filling the data points Xq are (Fang et al.,
2005).

Chung (1949) showed that when Xq is generated from the uniform distribution on [0, 1]d ,
D∗(Xq) converges to zero with order of convergence O[{log log(q)/q}1/2]. Faster convergence
rates can be achieved using space-filling design methods (Pukelsheim, 2006) or the low-
discrepancy sequence method (Halton, 1960; Sobol, 1967; Owen, 2003). Space-filling design
methods, developed in the experimental design literature, seek to generate a set of design points
that can cover the space as uniformly as possible. For further details see, for example, Fang et al.
(2005), Pukelsheim (2006) and Wu & Hamada (2011). The low-discrepancy sequence method
is frequently used in quasi-Monte Carlo and is extensively employed for numerical integration.
For a Sobol sequence Sq, one type of low-discrepancy sequence, it is known that D∗(Sq) is of
order O{log(q)d/q}, which is roughly the squared order of D∗(Xq) for fixed d. For more in-depth
discussions on quasi-Monte Carlo methods see, for example, Lemieux (2009), Dick et al. (2013),
Glasserman (2013, Ch. 5) or Leobacher & Pillichshammer (2014) and references therein.

Existing studies suggest that the space-filling property can be exploited to achieve a fast
convergence rate for numerical integration and response surface estimation (Fang et al., 2005;
Pukelsheim, 2006). These results inspire us to choose space-filling basis functions for smoothing
splines. Unfortunately, existing techniques of space-filling design cannot be directly applied to
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Fig. 1. (a) A toy example to illustrate local discrepancy: 10 data points are generated in [0, 1]2, with four of them
located in the shaded rectangle [0, a) where a = (0.4, 0.5)T; the local discrepancy is D(X10, a) = |4/10−0.4×0.5| =
0.2. (b) Illustration of the proposed basis selection method: the data points are represented by grey dots, and the

nearest-neighbour data point of each design point (black triangle) is represented by a circle.

our basis selection problem because, while the design space in space-filling design methods is
typically continuous, our sample space {xi}n

i=1 is finite and discrete. We propose an algorithm
that will enable us to overcome this obstacle.

3.3. Main algorithm

We develop a space-filling basis selection method in which we select the space-filling data
points in a computationally efficient manner. First, a set of design points Sq = {si}q

i=1 ∈ [0, 1]d

is generated, using either a low-discrepancy sequence or a space-filling design method. Next,
the nearest neighbour x∗

i of each si is selected from the sample points {xi}n
i=1. Thus, {x∗

i }q
i=1 can

approximate the design points Sq well, provided each x∗
i (i = 1, . . . , q) is sufficiently close to si.

The method is summarized as follows.

Step 1. Generate a set of design points {si}q
i=1 from [0, 1]d .

Step 2. Select the nearest neighbour of each design point si from {xi}n
i=1. Let the selected data

points be {x∗
i }q

i=1.

Step 3. Minimize the penalized least squares criterion (1) over the effective model space
HE = NJ ⊕ span{RJ (x∗

i , ·) : i = 1, . . . , q}.
The proposed algorithm is illustrated through a toy example in Fig. 1(b). One hundred data

points, grey dots, are generated from the uniform distribution in [0, 1]2, and a set of design
points, black triangles, is generated via the max projection design (Joseph et al., 2015), a recently
developed space-filling design method. The nearest neighbour of each design point is selected,
circles. One can see that the selected subsample is space-filling since it can effectively approximate
the design points.

In Fig. 2 the proposed space-filling basis selection method is compared with the uniform
basis selection method of Gu & Kim (2002) and the adaptive basis selection method of
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Fig. 2. Comparison of different basis selection methods: heatmaps for (a) the true function and spline estimates based
on (b) the uniform basis selection method, (c) the adaptive basis selection method, and (d) the proposed space-
filling basis selection method; black dots represent the sampled basis functions. The proposed method is observed to

outperform the other methods in approximating the true function.

Ma et al. (2015) on a two-dimensional toy example.We generate 5000 data points from the uniform
distribution in [0, 1]2. Figure 2(a) shows the heatmap for the true response surface y = sin{5(x1 +
x2)}. The dimension q of the effective model space is set to 5×(5000)2/9 ≈ 33 for all basis selec-
tion methods. The selected basis functions are represented by black dots in each panel. Panels
(b)–(d) display the heatmaps of the spline estimates of the three basis selection methods. In the
uniform basis selection method, the default random number generator in R (R Development Core
Team, 2020) is used to select the basis functions. It is observed that the selected points are not
uniformly distributed. This is a very common phenomenon in uniform basis selection because
the randomly selected points do not necessarily look uniformly distributed, especially when the
number of selected points is small. In contrast, it can be seen that the basis functions selected by
the proposed method are space-filling. Using space-filling design techniques, our method avoids
the pitfalls of the uniform basis selection method and yields uniformly distributed selected points.
The proposed method appears better than the other methods at estimating the true response.

Next we calculate the computational cost of the proposed method. In Step 1 the design points
can be generated beforehand, so the computational cost of Step 1 can be ignored. For the nearest-
neighbour search in Step 2 we employ the k-d tree method, which takes O{n log(n)} flops (Bentley,
1975; Wald & Havran, 2006). The computational cost of this step can be further reduced if we
are willing to sacrifice the accuracy of the search results, for example by using approximate
nearest-neighbour search algorithms (Altman, 1992; Arya et al., 1994). In Step 3, computation
of the smoothing spline estimates in the restricted space HE is O(nq2), as discussed in § 2. In
summary, the overall computational cost of the space-filling basis selection method is O(nq2).

4. Convergence rates for function estimation

Recall that the data points are assumed to be generated from the uniform distribution on
[0, 1]d . Thus, for each coordinate x, the corresponding marginal density is fX (·) = 1. We define
V (g) = ∫

[0, 1]d g2 dx. The following four regularity conditions are required for the asymptotic
analysis; the first three are identical to conditions used in Ma et al. (2015), where one can find
more technical discussions.

Condition 1. The function V is completely continuous with respect to J .

Condition 2. For some β > 0 and r > 1, ρν > βνr for sufficiently large ν.

Condition 3. For all μ and ν, var{φν(x)φμ(x)} � C1, where φν and φμ are the eigenfunctions
associated with V and J in H, and C1 is a positive constant.
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More efficient approximation of smoothing splines 729

Condition 4. For all μ and ν, V(gν, μ) � C2, where V(·) denotes the total variation, gν, μ(x) =
φν(x)φμ(x), and C2 represents a positive constant. Here the total variation is defined in the sense
of Hardy and Krause (Owen, 2003). As a specific case, when d = 1, the total variation is
V(g) = ∫ |g′(x)| dx, indicating that a smooth function exhibits small total variation. Intuitively,
the total variation measures how wiggly the function is.

Condition 1 indicates that there exists a sequence of eigenfunctions φν ∈ H and associated
eigenvalues ρν ↑ ∞ satisfying V (φν , φμ) = δνμ and J (φν , φμ) = ρνδνμ, where δνμ is the
Kronecker delta. The growth rate of the eigenvalues ρν dictates how fast λ should approach zero
and, further, what the convergence rate of the smoothing spline estimates is (Gu, 2013). The
eigenfunctions φν have a close relationship with the Demmler–Reinsch basis, which consists
of orthogonal vectors representing the l2-norm (Ruppert, 2002). The eigenfunctions φν can be
calculated explicitly in several particular scenarios. For instance, they are the sine and cosine
functions when J (η) = ∫ 1

0 (η′′)2 dx, where η is a periodic function on [0, 1]. More details on the
construction of the φν functions can be found in Gu (2013, § 9.1).

We now present our main theoretical results; all proofs are given in the Supplementary Material.
For a set of design points Sq of size q, we assume that the star discrepancy D∗(Sq) converges
to zero at a rate of O{log(q)d/q}, or O{q−(1−δ)} for an arbitrary small positive number δ. Such
a convergence rate is warranted if Sq is generated from a low-discrepancy sequence or space-
filling design method, as discussed earlier. Recall that the proposed method aims to select a
subsample that is space-filling, and success is determined by whether the chosen subsample X ∗

q
can effectively approximate the design points Sq. The following lemma bounds the difference
between X ∗

q and Sq in terms of the star discrepancy.

Lemma 1. Suppose that d is fixed and D∗(Sq) = O{q−(1−δ)} for an arbitrary small δ > 0. If
q = O(n1/d) as n → ∞, then D∗(X ∗

q ) = Op{q−(1−δ)}.
Lemma 1 says that the selected subsample X ∗

q can effectively approximate the design points
Sq in the sense that the convergence rate of D∗(X ∗

q ) is similar to that of D∗(Sq). The following
theorem is the Koksma–Hlawka inequality, which will be used in proving our main theorem; see
Kuipers & Niederreiter (2012) for a proof.

Theorem 1 (Koksma–Hlawka inequality). Let Tq = {t1, . . . , tq} be a set of data points in
[0, 1]d , and let h be a function defined on [0, 1]d with bounded total variation V(h). We have∣∣∫[0, 1]d h(x) dx − ∑q

i=1 h(ti)/q
∣∣ � D∗(Tq)V(h).

Combining Lemma 1 and Theorem 1 and setting h = gν, μ and Tq = X ∗
q yields the following

lemma.

Lemma 2. If q = O(n1/d), then under Condition 4, for all μ and ν we have

∣∣∣∣
∫

[0, 1]d
φνφμ dx − 1

q

q∑
j=1

φν(x
∗
j )φμ(x∗

j )

∣∣∣∣ = Op{q−(1−δ)}.

Lemma 2 demonstrates the superiority of {x∗
i }q

i=1, the subsample selected by the proposed
method, over a randomly selected subsample {x+

i }q
i=1. To be specific, as a direct consequence of

Condition 3, we have E{∫[0, 1]d φνφμ dx − ∑q
j=1 φν(x

+
j )φμ(x+

j )/q}2 = O(q−1) for all μ and ν.
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Lemma 2 therefore implies that the subsample X ∗
q can more efficiently approximate the integral∫

[0, 1]d φνφμ dx for all μ and ν. We now state our main theoretical result.

Theorem 2. Suppose that
∑

i ρ
p
i V (η0, φi)

2 < ∞ for some p ∈ [1, 2], and let δ be an arbitrary
small positive number. Under Conditions 1–4 and assuming that q = O(n1/d) and q1−δλ1/r → ∞
as λ → 0, we have (V + λJ )(η̂E − η0) = Op(n−1λ−1/r + λp). In particular, if λ  n−r/(pr+1),
the estimator achieves the optimal convergence rate (V + λJ )(η̂E − η0) = Op{n−pr/(pr+1)}.

It is shown in Theorem 9.17 of Gu (2013) that the full-sample smoothing spline estimator η̂

has convergence rate (V + λJ )(η̂ − η0) = Op{n−pr/(pr+1)} under some regularity conditions.
Theorem 2 states that the proposed estimator η̂E achieves the same convergence rate as the full-
sample estimator η̂ under two extra conditions on q: (i) q = O(n1/d) and (ii) q1−δλ1/r → ∞ as
λ → 0. Moreover, Theorem 2 indicates that in order to achieve the same convergence rate as the
full-sample estimator η̂, the proposed approach requires a much smaller number of basis functions,
in the case where λ  n−r/(pr+1). The condition q1−δλ1/r → ∞ indicates that an essential choice
of q for the proposed estimator should satisfy q = O{n(1+δ)/(pr+1)} when λ  n−r/(pr+1). As a
comparison, for both the random basis selection method (Gu & Kim, 2002) and the adaptive basis
selection method (Ma et al., 2015), the essential number of basis functions is q = O{n2/(pr+1)+δ}.
Thus, the proposed estimator is more efficient in that it reduces the order of the essential number
of basis functions.

Given q = O(n1/d), when d � pr + 1 it follows naturally that q1−δλ1/r → ∞ is satisfied.
On the other hand, when d > pr + 1, q = O(n1/d) becomes sufficient, but not necessary for
q1−δλ1/r → ∞ to hold. We therefore stress that the essential number of basis functions for the
proposed method, q = O{n(1+δ)/(pr+1)}, can be achieved only when d � pr + 1. The parameter
p in Theorem 2 is closely associated with the true function η0 and will affect the convergence
rate of the proposed estimator. Intuitively, the larger the p is, the smoother the function η0 will
be. For p ∈ [1, 2], the optimal convergence rate of (V + λJ )(η̂E − η0) falls in the interval
[Op(n−r/(r+1)), Op(n−2r/(2r+1))]. To the best of our knowledge, the problem of selecting the
optimal p has rarely been studied. One exception is the work of Serra & Krivobokova (2017),
who studied such a problem in the one-dimensional setting; they proposed a Bayesian approach
to selecting an optimal parameter, called β, which is known to be proportional to p. However,
because the constant β/p is usually unknown, this approach still cannot be used to select the
optimal p in practice. Furthermore, whether such a method can be extended to high-dimensional
cases remains unclear.

For the dimension q of the effective model space, a suitable choice is q = n(1+δ)/(4p+1)+δ in the
following two cases: (I) univariate cubic smoothing splines with penalty J (η) = ∫ 1

0 (η′′)2, r = 4
and λ  n−4/(4p+1); (II) tensor-product splines with r = 4 − δ∗ where δ∗ > 0. For p ∈ [1, 2],
the dimension lies approximately between O(n1/9) and O(n1/5).

5. Simulation results

To assess the performance of the proposed space-filling basis selection method, we carry out
extensive analyses on simulated datasets. We compare the proposed method with uniform basis
selection and adaptive basis selection, and report both prediction errors and running times.

The following four functions on [0, 1] (Lin & Zhang, 2006) are used as building blocks in
our simulation study: g1(t) = t, g2(t) = (2t − 1)2, g3(t) = sin(2π t)/{2 − sin(2π t)} and
g4(t) = 0.1 sin(2π t)+0.2 cos(2π t)+0.3 sin(2π t)2 +0.4 cos(2π t)3 +0.5 sin(2π t)3. In addition,
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Fig. 3. Simulation under regression settings (i)–(iv) (from left to right), with the signal-to-noise ratio taken to be 5
(upper panels) and 2 (lower panels). The mean squared prediction error (MSE) is plotted against the sample size
(n) on the log-log scale, and the vertical bars represent standard errors obtained from 20 replicates. The meth-
ods compared are the proposed space-filling basis selection method (solid), the adaptive basis selection method
(dotted), and the uniform basis selection method (dashed); lines with triangles and circles correspond to q = 5n2/9 and

q = 10n1/9, respectively.

we use the following two functions on [0, 1]2 (Wood, 2003):

h1(t1, t2) = {0.75/(πσ1σ2)} × exp{−(t1 − 0.2)2/σ 2
1 − (t2 − 0.3)2/σ 2

2 },
h2(t1, t2) = {0.45/(πσ1σ2)} × exp{−(t1 − 0.7)2/σ 2

1 − (t2 − 0.8)2/σ 2
2 },

where σ1 = 0.3 and σ2 = 0.4. The signal-to-noise ratio, defined as var{η(X )}/σ 2, is set at two
levels: 5 and 2. We generate replicated samples of sizes n = {210, 211, . . . , 214} and dimensions
d = {2, 4, 6} uniformly on [0, 1]p from the following four regression settings:

(i) a two-dimensional function g1(x1x2) + g2(x2) + g3(x1) + g4(x2) + g3{(x1 + x2)/2};
(ii) a two-dimensional function h1(x1, x2) + h2(x1, x2);

(iii) a four-dimensional function g1(x1) + g2(x2) + g3(x3) + 2g1{(x1 + x4)/2} + 2g2{(x2 +
x3)/2} + 2g3{(x1 + x3)/2};

(iv) a six-dimensional function h(x1, x2) + h(x1, x5).

In the simulation, q is set to 5n2/9 and 10n1/9 based on the asymptotic results. To combat the
curse of dimensionality, we fit smoothing spline analysis of variance models with all main effects
and two-way interactions. The prediction error is measured by the mean squared error, defined as
[∑n0

i=1{η̂E(ti)−η0(ti)}2]/n0, where {ti}n0
i=1 is an independent testing dataset uniformly generated

on [0, 1]p with n0 = 5000. The max projection design (Joseph et al., 2015) is used to generate
design points in Step 1 of the proposed method. Our empirical studies suggest that the Sobol
sequence and other space-filling techniques, such as the Latin hypercube design (Pukelsheim,
2006) and the uniform design (Fang et al., 2000), also yield similar performance.

Figure 3 plots the mean squared error against the sample size on the log-log scale. The full-
sample estimator is omitted because of its high computational cost. The figure shows that the
space-filling basis selection method provides more accurate smoothing spline predictions than
the other two methods in almost all settings. It can be seen that the lines with circles, q = 10n1/9,
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Table 1. Means and standard errors (in parentheses) of the computational time, in CPU
seconds, for multivariate cases, based on 20 replicates

True function SNR UNIF ABS SBS

(i) 5 0.97 (0.15) 0.90 (0.05) 0.90 (0.04)
2 0.92 (0.10) 0.87 (0.04) 0.87 (0.06)

(ii) 5 0.88 (0.04) 0.87 (0.03) 0.90 (0.06)
2 0.86 (0.05) 0.85 (0.02) 0.90 (0.06)

(iii) 5 3.92 (0.24) 3.95 (0.24) 4.04 (0.19)
2 4.08 (0.30) 4.51 (0.66) 4.27 (0.39)

(iv) 5 12.95 (0.61) 15.10 (3.20) 15.45 (3.04)
2 14.33 (1.44) 13.72 (1.02) 14.25 (1.09)

SNR, signal-to-noise ratio; UNIF, uniform basis selection method; ABS, adaptive basis selection method;
SBS, the proposed space-filling basis selection method.

for the space-filling basis selection method display a linear trend, as do the lines with triangles,
q = 5n2/9, for the other two methods. This indicates that the proposed estimator has a faster
convergence rate than the other two methods.

Further simulation results are reported in the Supplementary Material, in which we consider
regression functions that exhibit several sharp peaks. In those cases, the results suggest that
both the space-filling basis selection method and the adaptive basis selection method outperform
the uniform basis selection method, and neither the space-filling basis selection method nor the
adaptive basis selection method is superior to the other. Moreover, the proposed space-filling
basis selection method outperforms the adaptive basis selection method as the sample size n gets
larger.

Table 1 summarizes the computing times for model-fitting with all the methods on a synthetic
dataset with n = 214 and q = 5n2/9. The simulation is replicated for 20 runs using a computer
with an Intel 2.6 GHz processor. The time taken to calculate the smoothing parameter is not
included. The result for the full-sample smoothing spline estimator is omitted because of the huge
computational cost. The computational time for generating a set of design points, i.e., Step 1 of
the proposed algorithm, is not included since the design points can be generated beforehand. One
can see that the computing time of the proposed method is comparable to that of the other two
basis selection methods under all settings. Combining this observation with the result in Fig. 3
leads to the conclusion that the proposed method can achieve more accurate prediction without
requiring much more computational time.

6. Real-data example

The problem of measuring total column ozone has attracted significant attention in the past few
decades. Ozone depletion facilitates transmission through the atmosphere of ultraviolet radiation,
which can cause severe damage to DNA and cellular proteins involved in biochemical processes,
affecting growth and reproduction. Statistical analysis of total column ozone data involves three
steps. In the first step, raw satellite data (level 1) are retrieved by NASA, which then calibrates
and pre-processes the data to generate spatially and temporally irregular total column ozone
measurements (level 2). Finally, the level 2 data are processed to yield level 3 data, which are the
daily and spatially regular data released to the public.

We fit the nonparametric model yij = η(x〈1〉i, x〈2〉j) + εij to a level 2 total column ozone
dataset (n = 173 405) compiled by Cressie & Johannesson (2008). Here, yij is the level 2 total
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Fig. 4. Smoothing spline prediction of total column ozone value for 1 October 1988, in Dobson units.

column ozone measurement at the ith longitude, x〈1〉i, and jth latitude, x〈2〉i, and εij represent
independent and identically distributed random errors. The heatmap of the raw data is presented
in the Supplementary Material. The thin-plate smoothing spline is used for model-fitting, and the
proposed method is used for the estimation. The number of basis functions is set to q = 20n2/9 ≈
292. The design points employed in the proposed basis selection method are obtained from a
Sobol sequence (Dutang & Savicky, 2013). The heatmap of the predicted image on a 1◦ × 1◦
regular grid is shown in Fig. 4. It is seen that the total column ozone value decreases dramatically
to form the ozone hole over the South Pole, around the −55◦ latitudinal zone.

The computing times, in CPU seconds, on the same computer as for the simulation studies
are 0.1 s for basis selection, 129 s for model-fitting and 21 s for prediction. Further results on
comparison of the proposed method and other basis selection methods using this dataset can be
found in the Supplementary Material.
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